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Figure 1: The Ferrozuit System features a magnetic vest integrated with an electro-permanent magnet-embedded rig (center).
The vest incorporates custom double-weave textiles made of ferromagnetic yarns (left) and embroidered coils (right)

Abstract

Long-duration human space missions introduce persistent phys-
ical, physiological, and psychological challenges stemming from
the absence of gravity. Beyond major concerns like bone deteriora-
tion, cardiovascular deconditioning, and muscle atrophy, astronauts
frequently experience spatial disorientation, discomfort during rou-
tine tasks, and difficulty maintaining stable body positioning. These
subtle yet pervasive issues impact daily functioning, underscoring
the need for lightweight, unobtrusive solutions that support orien-
tation, comfort, and stability in microgravity environments.
Ferrozuit introduces a solution to address these challenges in
microgravity. It is a prototype crafted from custom ferromagnetic
thread, woven and tailored to interact with programmable (elec-
tro)permanent magnets embedded within the microgravity envi-
ronment. This system aims to provide an anchoring force intended
to improve stability during tasks, enhance comfort during rest, and
create a sense of orientation. This paper details the design rationale,
the fabrication of the ferromagnetic textile, the magnetic docking
system, initial technical evaluations, and potential applications.
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Ferrozuit reimagines spatial anchoring as an embedded, textile-
driven experience, blending textile craft with advanced materials
for adaptive wearable anchoring in microgravity environments.

CCS Concepts

« Human-centered computing — Human computer interac-
tion (HCI).
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1 Introduction

As long-duration space missions advance, wearable technology is
becoming essential for astronaut health and performance [1, 4, 5,
15]. Innovations in areas like haptics and human-computer inter-
action are enabling more adaptive body-environment integration,
reshaping how astronauts work in microgravity [12, 16, 21, 26].
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However, astronauts face ergonomic and orientation challenges
[24]. Simple actions often require restraints such as straps or Vel-
cro. While straps provide secure fastening and adjustability, they
are difficult to manipulate, uncomfortable, and impede movement.
Velcro is lightweight and easy to use but produces undesired noise
and degrades over time [3]. Both can impact comfort and work-
flow. Moreover, maintaining a stable orientation for precision tasks
demands effort, leading to fatigue and reduced task efficiency. Fer-
rozuit explores a novel approach to address these aspects of life in
microgravity, providing magnetic anchoring. The system includes
a garment woven from custom ferromagnetic yarns that interacts
with strategically placed magnets within the habitat. The goal is to
offer a subtle, distributed anchoring force, not as a primary physio-
logical countermeasure, but as a system to improve stability during
tasks, comfort, and an intuitive sense of place that gravity normally
provides [23]. This work details the design, fabrication, and initial
evaluation of the Ferrozuit prototype, positioning it as a wearable
experimentation for spatial anchoring in space environment.

Figure 2: Illustrating a user anchored in Zero-Gravity: the
gray zones indicate (ferro)magnetic materials.

2 Related Work

Previous approaches to microgravity stability, such as 1970s-era
magnetic footwear [20] or more recent ferrofluid-based concepts [9],
faced limitations including parasitic fields, or issues with liquid con-
tainment and weight. Ferrozuit builds on this legacy by proposing a
solid-state solution using ferromagnetic textiles, leveraging recent
progress in e-textiles [10, 17, 18, 22, 25, 27]. Our approach com-
bines these advanced textiles with controllable electro-permanent
magnets (EPMs), creating a dynamic anchoring system that is both
passive and active. Our technical choices are grounded in prior e-
textile innovations. Integrating ferromagnetic yarns with magnets
for controlled interaction was demonstrated in recent work like
MagKanitic, which uses it for haptic feedback [11]. The design of a
body-conformable garment builds on platforms like Second Skin,
which emphasizes adaptable wearable systems [6, 7]. Finally, our
use of embroidered coils for active magnetic control is informed by
techniques seen in projects like SonoFlex, which creates magnet-
free speakers from similar embroidered structures [19].

3 Design Rationale and System Overview

The core function of Ferrozuit is to provide a persistent, gentle
sense of anchoring in microgravity, akin to a subtle gravitational
pull, through a wearable textile interface (as seen in figure 2). This
is intended to enhance comfort, facilitate orientation, and reduce
the reliance on cumbersome restraints.
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The Ferrozuit system comprises two primary components:

(1) The Ferromagnetic Garment: A wearable vest prototype
constructed from a custom-developed textile containing fer-
romagnetic yarns. A primary design emphasis was on com-
fort and wearability, ensuring the garment is soft, flexible,
and comfortable for extended use [2]. The garment itself can
be either passive, relying solely on its attraction to external
magnetic fields, or active, by incorporating embroidered elec-
tromagnets for dynamic, localized control over the anchoring
force.

(2) The Magnetic Anchoring Surface: Structures, such as
wall panels or furniture, that host the magnetic anchoring
points (figure 1). A critical design requirement is the ability to
switch the magnetic field off to prevent attracting unwanted
metallic objects, and to allow the user to detach freely. To
meet this low-power, bi-stable need, we explored two types
of controllable magnets, EPMs, which are toggled with a
brief electrical pulse, and mechanically-switched permanent
magnets (e.g. MagJig), which can be toggled with motors.
Both types are crucial for resource-constrained space en-
vironments as they consume no energy to maintain their
magnetic state (either on or off).

The initial concept imagines an astronaut wearing the Ferrozuit
garment and being able to dock or anchor, to adhere gently onto
designated surfaces for tasks, rest, or sleep, thereby creating a
subjective sense of "down" and stability as illustrated in figure 2.

4 Implementation

The realization of Ferrozuit involved the fabrication of custom
yarns, textiles and garments (figure 3).

Figure 3: a) Custom ferromagnetic yarns that were integrated
through b-c) weaving process to create d) magnetic textiles.

4.1 Ferromagnetic Textile Development

e Custom Yarn: A key innovation was the development of a
suitable ferromagnetic yarn. After experimentation, an iron-
based thread was custom manufactured by Filix (France).
They produced 20 spools of 1 kg for this prototype.

e Weaving Process: The ferromagnetic yarn was woven by
the London Cloth Co. (UK), using analog looms, chosen for
their mechanical flexibility with non-standard materials.

e Weave Structure Evolution: Initial tests of an iron warp
with a cotton weft yielded a pleasant textile but the magnetic
force was insufficient. An all-iron weave (iron warp and
weft) was reasonable magnetic but proved unwearable due to
stiffness. The successful solution was a multilayered double
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cloth weave. This structure used the custom iron-based yarn
as a thick weft and a strong synthetic yarn as the warp
(Dyneema). Two layers were woven together, increasing the
magnetic material density while maintaining textile integrity,
softness, and durability.

4.2 Garment Fabrication
Our vest prototype (figure 1 & 4) addresses comfort and safety:

e The ferro-textile was backed with YULEX, a sustainable neo-
prene alternative, providing cushioning and insulation.

e Seams were finished using bonded seam tapes made from
recycled technical knit (Carvico Vita), ensuring flexibility
and a smooth internal finish.

This construction resulted in a garment that is magnetically respon-
sive yet flexible and body-safe.

Y LY

Figure 4: Illustrations of current and envisioned Ferrozuit:
V1 (left) - simple harness to test: strength and weave of fabric,
tension points for garment.

V2 (right) - softer full garment: engineered construction
based on V1, increased comfort and movement.

4.3 Magnetic Anchoring System

To interact with the ferromagnetic garment, we implemented an
anchoring system with several key components:

e Anchoring Rig: A demonstration rig was constructed us-
ing aluminum 80/20 modular framing. This rig housed the
magnets for interaction with the vest.

e Electro-Permanent Magnets (EPMs): Open-source Open-
Grab EPM v3 units were selected [8]. These EPMs generate
a strong magnetic field with a brief (e.g., 20 us) high-voltage
pulse and maintain their magnetic state (on or off) with-
out continuous power consumption, requiring only approxi-
mately 0.67 mWh per activation/deactivation cycle.

e Mechanically Switchable Magnets: Commercially avail-
able mechanically switchable permanent magnets (MagJig
150) were also tested as an alternative or supplementary an-
choring mechanism, offering strong holding forces that can
be toggled manually or using a motor.

e Embroidered Coils: As an exploration into active garment-
based magnetism, copper coils were embroidered directly
onto textile swatches. These were powered by a simple 9V
source, and their magnetic field strength was qualitatively
assessed using a magnetometer-enabled smartphone:
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5 Technical Evaluation

Initial technical evaluations were conducted to assess the feasibility
and performance of our magnetic anchoring. The investigation
focused on two primary approaches:

e Passive Ferromagnetic Textile Interaction: Measuring
the anchoring force of our custom ferromagnetic textile
against external electro-permanent and mechanical magnets
(the simplest, low-power setup).

o Active Embroidered Electromagnets: Assessing garment-
integrated embroidered coils that generate active magnetic
pull over distance, allowing users to initiate controlled drift
toward remote anchors during EVA free-float operations.

Our magnetic simulations showed that force is concentrated at
the coil’s center (figure 5), and larger diameters add more resistance
than useful magnetic force.

Figure 5: Top view of an embroidered coil VS a cm-based
ruler, and cross section of its magnetic field simulation.

This led us to prioritize smaller embroidered coils. For our evalu-
ation, we built a test jig that holds an electro-magnet (the coil), and
observe its attraction force by measuring the weight variation of a
magnet resting on a scale. To observe the temperature evolution
of the embroidered coil, we attached a thermal camera above it, as
seen in figure 6.

Our evaluation of each magnetic component yielded the following
key findings:

o EPM Performance: Tests with the OpenGrab EPMs and
the ferromagnetic textile showed that the initial magnetic
force was relatively weak, measured at about 5 g of holding
force despite a 34W power input during switching.

e Mechanical Magnet Performance: The mechanically switch-
able permanent magnets (Magswitch) exhibited significantly
higher holding forces than the EPMs tested. However, mov-
ing parts are generally avoided when possible, as they are
prone to mechanical wear and present potential points of
failure.

¢ Embroidered Coil Performance: Smaller embroidered
coils (0.15 mm Cu wire [19]) delivered roughly ~ 3% the
force of the initial, larger coils at the same power thanks to
lower resistance and higher current, yet still fell well short
of EPMs and mechanical magnets.

e Thermal Characteristics of Coils: A 65 W drive raised an
embroidered coil to 120°C in 10 s (see figure 6), emphasiz-
ing the need for strict power management and added heat-
spreading layers (e.g., carbon or Kevlar) in higher-power
designs.
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Figure 6: Test jig to measure the magnetic attraction (left),
and thermal imaging of the embroidered coil (right).

Coil design and magnetic force
Inertia remains in microgravity, yet, routine ISS tasks, body
motions, and minor equipment vibrations rarely cause drift speeds
above ~ 0.05ms~! [14]. Bringing a 90 kg crewmember to rest from
that speed within 0.2 s requires an average force of around 22N.
To overcome inertia, we need:
0? 0?
a= ﬁ = FrequiredZm' ﬁ
where Frequired = Force needed to initiate motion (N), m = Mass
of astronaut (kg), v = Desired final velocity (m/s), and d = Distance
to be covered (m). The magnetic force produced by a coil is:

po-M-N-X-i-(a®-b3(3d*-1%)
6(a—b)(d? - 12)3

where p1o = 47 x 10”7 H/m (vacuum permeability), M = Effective

magnetic dipole strength, N = Number of turns in the coil, X =
Geometric correction factor, i = Current through the coil (A), a,b =
Inner and outer radius of the coil (m), d = Distance between coil and
magnet (m), [ = Magnet thickness or vertical offset (m). Rearranged
to solve for desired force N:

_ _Frequired “6(a— b)(dz - 12)3

"o M-X-i- (a3 -b3)(3d% - I2)
Based on the current limitations of our wire (32 AWG), a coil may
not be able to generate the required force unless it is significantly
thick. However, we use a distributed array of smaller coils to im-
prove the magnetic load, optimize the minimum current load, and
enhance the overall flexibility of both the coils and the vest.

F magnetic =

Anchoring force and system capability

Bench tests show that an EPM coupled to one coil delivers 0.05 N
of holding force (about 5 g) over its 16 cm? footprint, i.e. 0.17 kPa.
A lightweight 10 X 10 EPM matrix (0.16 m?) would therefore supply
~ 5N of anchoring force. While this is below the target of 22N,
multiple arrays or higher-flux EPMs can be tiled around the habi-
tat to achieve the desired margin without decreasing the wearer’s
comfort. Because EPMs are bi-stable, each unit draws power only
during its 20 ps switching pulse (34 W peak, 0.67 mWh per cycle).
Once latched, its coils are idle, so there is no battery drain. By
contrast, our exploratory embroidered coils must be driven contin-
uously (65 W in tests, reaching 120°C in 10 s) and are only suited
for transitions rather than sustained anchoring.

These evaluations indicate that while the concept of ferromag-
netic textiles for anchoring is viable, optimizing the magnetic flux
coupling between the textile and various magnet types, managing
thermal loads, and achieving sufficient force for practical anchoring
are key areas for further development.
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6 Discussion

The Ferrozuit project explores the feasibility of creating custom fer-
romagnetic textiles and integrating them into a wearable garment
for potential microgravity anchoring. The multi-layered weaving
technique offer static anchoring while the embroidered coils can
help for transient attraction, and the electro-permanent magnet
offers a promising low-power solution for controllable anchoring
points. However, significant challenges remain. The complexity of
achieving high magnetic density in a flexible textile require fur-
ther material science and engineering refinement. The embroidered
coils, while an interesting avenue for dynamic control, pose thermal
challenges at higher power levels. The much stronger forces from
mechanical magnets suggest that hybrid systems or improved EPM
designs tailored for textile interaction might be beneficial.
Despite these technical challenges, the Ferrozuit concept ex-
plores several advantages for enhancing the quality of daily life
in space. The distributed, soft anchoring could provide a more
comfortable and psychologically grounding experience than rigid
tethersWhile not intended to replace resistive exercise for mitigat-
ing muscle atrophy, such a system could reduce the daily fatigue
and awkwardness associated with constant free-floating or using
rigid restraints for simple tasks. This could be particularly beneficial
for sleep, focused tasks, and general orientation. The aesthetic and
tactile qualities of a textile-based system [13] could also contribute
positively to the habitability of long-duration space missions, an
often-underestimated factor. Future iterations could explore:

e Heat-dissipating textiles for the embroidered coils. Lower
resistance with smaller coils should improve performances.

o fibers could also be created with co-extrusion of the same
materials, and surrounding coils.

7 Conclusion

Ferrozuit explores adaptive wearable technology for microgravity
environments by combining textile craftsmanship with functional
yarns and electronics. The project envisions a ferromagnetic gar-
ment paired with an anchoring system, demonstrating how mag-
netic textile-based interfaces can offer a more integrated and com-
fortable solution to the challenges of living and working in space.
Beyond space applications, this approach also opens up possibili-
ties for magnetic textiles in Earth-based contexts, such as modular
clothing systems, or hands-free support in dynamic environments.
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